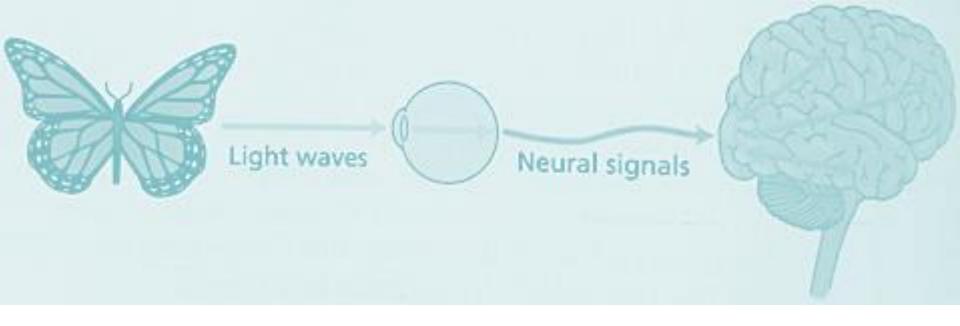
Invited talk at Imperial College London 8 November 2024

Elevating Health Awareness through Personalized Multimodal Sensing

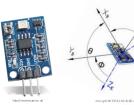
[building a future]


Mohammad Malekzadeh

Senior Research Scientist & Tech Lead mmalekzadeh.github.io

Device Software Research

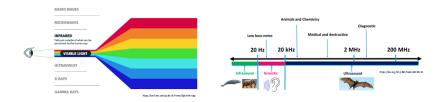
From Sensation to Perception


Sight, hearing, smell, taste, touch, proprioception,

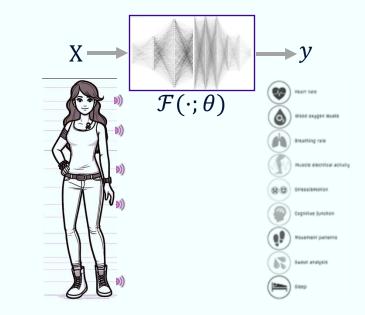
. . .

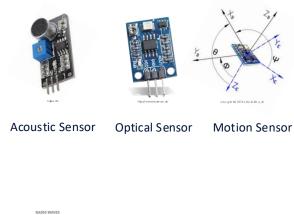
Memory, learning, expectation, attention, reflection, ...

Machine Sensation



Acoustic Sensor


Optical Sensor Motion Sensor

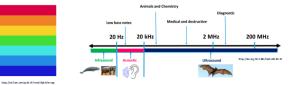

Haptic Sensor

Machine Sensation

Machine Perception

MICROWAVES

Falls just outside of what ca servaived by the human ex-

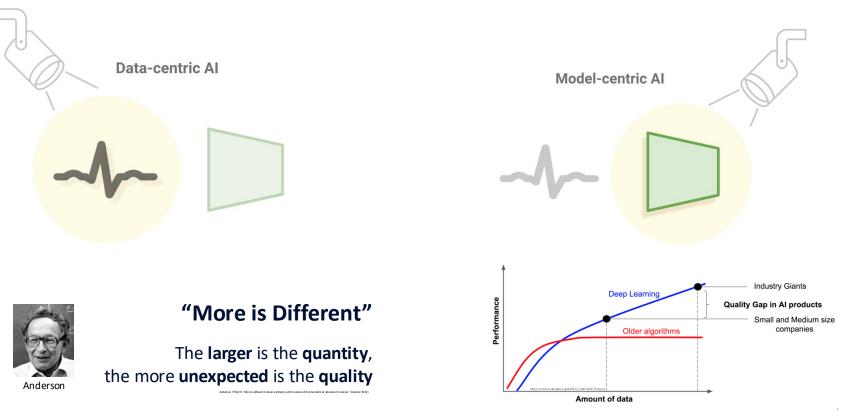

VISIBLE LIGHT

INFRARED

ULTRAVIOLET

GAMMA RAYS

X-RAYS


dolog/201027/00464-02109027-7

Haptic Sensor

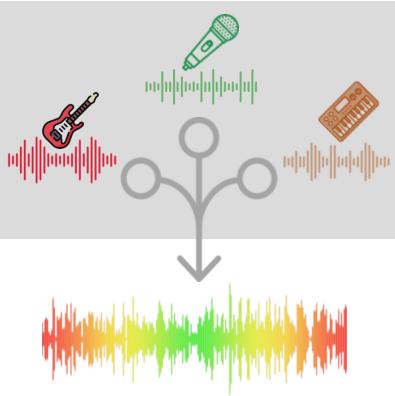
Machine Learning: Data-centric & Model-centric

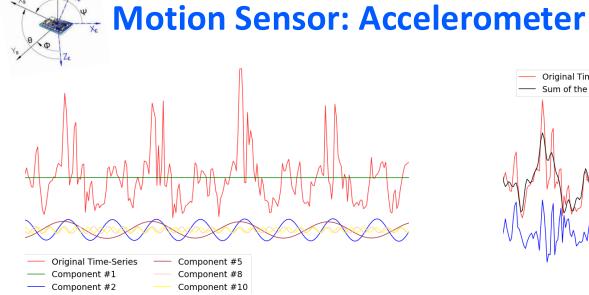
Machine Learning: Data-centric & Model-centric

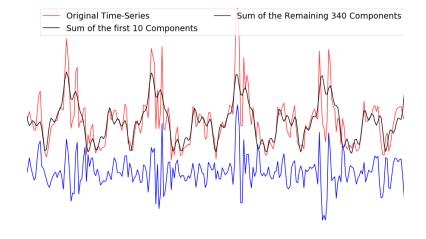
Labelling!

https://youtu.be/pbmTDxprHaM?feature=shared

Annotation!


- ✓ Tree
- ✓ Bicycle
- 🗸 Kid
- ✓ Female
- ✓ Male
- ✓ Family
- ✓ Park
- ✓ Green
- ✓ Outdoor
- ✓ Cycling
- ✓ Summer
- ✓ ...


A happy family of three—parents and their young son cycling together through a green park enjoying the outdoors in a sunny day and creating lasting memories with every ride. الله الم



Acoustic Sensor

labelling

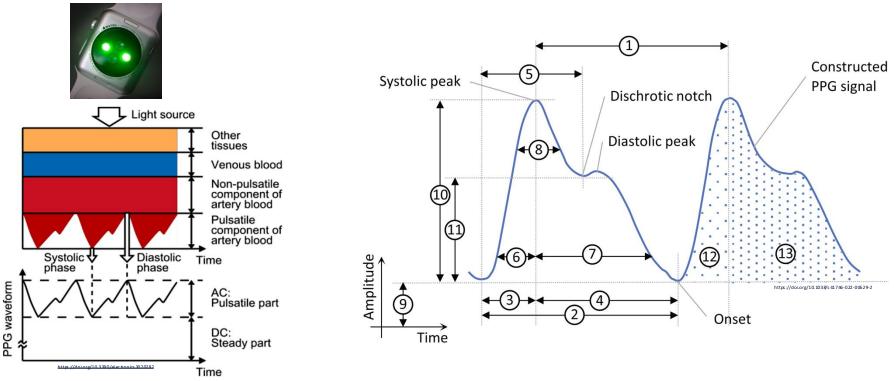
ZB

(A) Walking

(B) An *early thirties, tall* & *skinny man* is *walking*

age

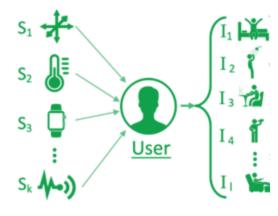
height


weight

gender

activity

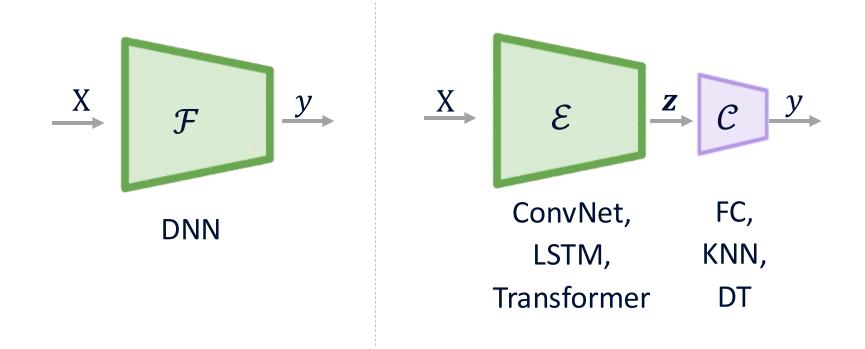
Optical Sensor: PhotoPlethysmoGram (PPG)



Target information in the Data

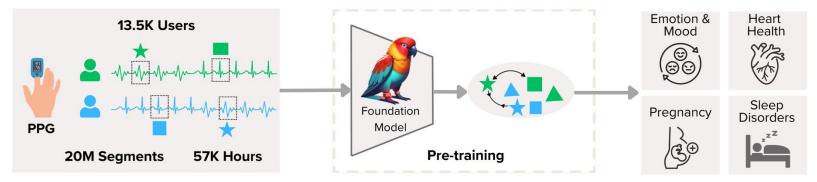
$\mathbf{X} \in \mathbb{R}^{t \times d \times c}$

At each **time-point**, each **device**, generates samples coming from some **channels**.



$Y^{i} = \mathcal{F}^{i}(X)$

Each **application** concerns only some specific **information**!


Deep Learning

an encoder to extract features and a classifier to make predictions

Learning from unlabeled PPG data

PAPAGEI: OPEN FOUNDATION MODELS FOR OPTICAL PHYSIOLOGICAL SIGNALS

Arvind Pillai²*, Dimitris Spathis^{1,3}, Fahim Kawsar^{1,4}, Mohammad Malekzadeh¹ ¹Nokia Bell Labs, UK, ²Dartmouth College, USA, ³University of Cambridge, UK, ⁴University of Glasgow, UK

https://github.com/Nokia-Bell-Labs/papagei-foundation-model

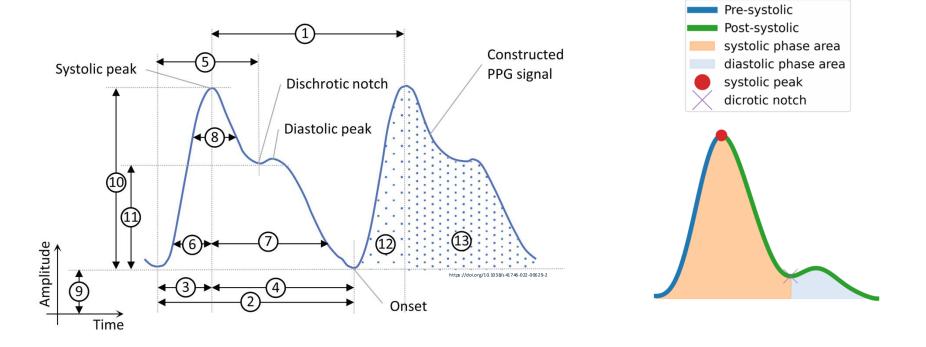
PPG datasets Publicly available!

age

age

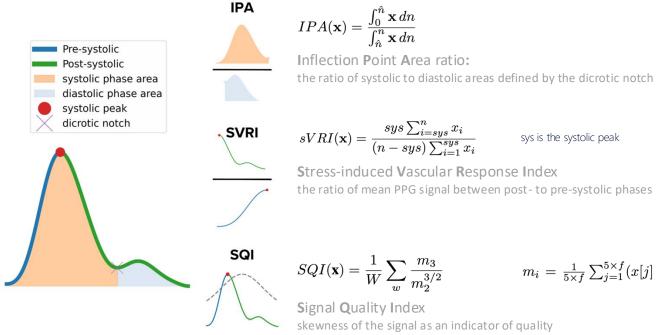
Dataset	#Subjects	s #Segment	s Hours	VitalDB @ 500Hz
VitalDB MIMIC-III	5,866 5,596	6,248,100 7,196,401	17,355 19,990	0
MESA Total	2,055 13,517	7,306,705	20,296 5 57,641	MESA @ 256Hz 0 - / / / / / / / / / / / / / / / / / /
VitalDB	15,517	20,731,200	MESA	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
500 - 400 - 500 - 100 - 0 20 40 60 age	400 - 300 - 100 - 0 200 - 100 - 0 20	150 - 150 - 15		0.25 - MIMIC-III @ 125Hz 0.00 - MIMIC-III @ 125Hz 0 200 400 600 800 1000

age


5000

2500

1200


PPG characteristics

Better understanding of data for designing better models

PPG characteristics

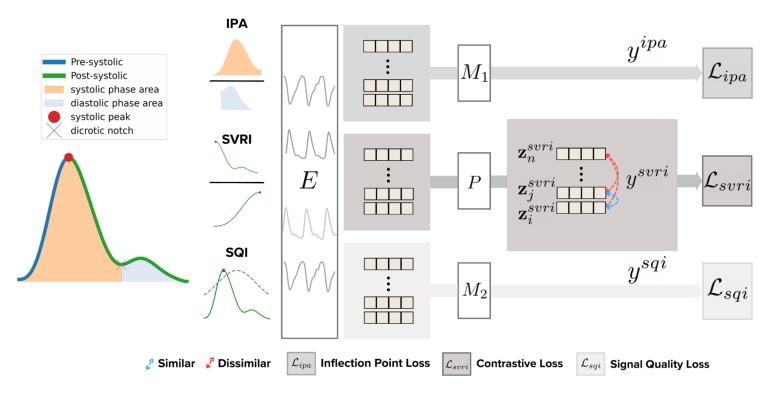
Better understanding of data for designing better models

$$PA(\mathbf{x}) = \frac{\int_0^n \mathbf{x} \, dn}{\int_n^n \mathbf{x} \, dn}$$

inflection **P**oint **A**rea ratio:

$$sVRI(\mathbf{x}) = \frac{sys\sum_{i=sys}^{n} x_i}{(n-sys)\sum_{i=1}^{sys} x_i}$$

sys is the systolic peak

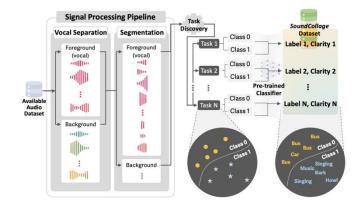

Stress-induced Vascular Response Index the ratio of mean PPG signal between post- to pre-systolic phases

$$m_i = \frac{1}{5 \times f} \sum_{j=1}^{5 \times f} (x[j] - \mu_x[j])^i$$

skewness of the signal as an indicator of quality

PPG characteristics

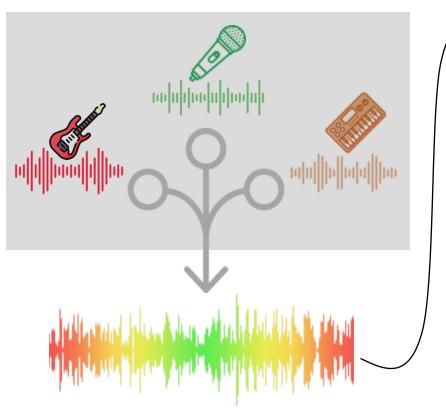
Better understanding of data for designing better models

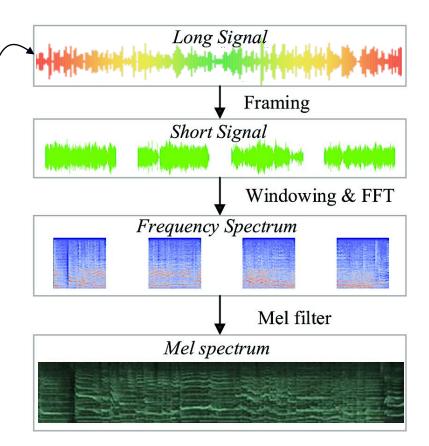


Linear Probing

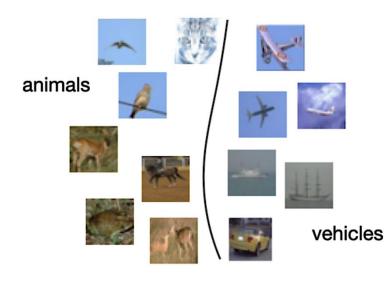
	G	amazon	Carnegie Mellon University	2-2	
	REGLE (0.07M)	Chronos (200M)	Moment (385M)	PAPAGEI-P (5M)	PAPAGEI-S (5.7M)
Classification - AUROC (\uparrow)	(Yun et al., 2024)	(Ansari et al., 2024)	(Goswami et al., 2024)		
ICU Admission	0.57 [0.52-0.62]	0.73 [0.68-0.80]	0.72 [0.70-0.80]	0.73 [0.67-0.78]	0.79 [0.75-0.82]
Mortality	0.55 [0.52-0.59]	0.68 [0.65-0.71]	0.67 [0.63-0.71]	0.67 [0.63-0.71]	0.67 [0.63-0.70]
Smoker	0.54 [0.47-0.59]	0.62 [0.57-0.67]	0.62 [0.56-0.67]	0.64 [0.58-0.69]	0.61 [0.56-0.66]
Pregnancy stage	0.64 [0.57-0.63]	0.81 [0.79-0.82]	0.76 [0.74-0.78]	0.74 [0.72-0.76]	0.78 [0.75-0.80]
Hypertension	0.47 [0.34-0.58]	0.57 [0.43-0.71]	0.75 [0.64-0.85]	0.74 [0.55-0.90]	0.77 [0.68-0.87]
Sleep Disordered Breathing	0.45 [0.30-0.61]	0.58 [0.35-0.82]	0.45 [0.23-0.66]	0.54 [0.23-0.66]	0.70 [0.57-0.84]
Mood Disturbance	0.41 [0.16-0.66]	0.43 [0.21-0.68]	0.55 [0.33-0.78]	0.53 [0.27-0.78]	0.56 [0.33-0.77]
Valence	0.55 [0.52-0.57]	0.56 [0.53-0.59]	0.57 [0.54-0.59]	0.53 [0.51-0.56]	0.56 [0.54-0.59]
Arousal	0.51 [0.52-0.58]	0.57 [0.54-0.60]	0.56 [0.53-0.58]	0.58 [0.55-0.61]	0.55 [0.52-0.57]
Average	$\mid~0.52\pm0.06$	0.62 ± 0.10	0.63 ± 0.09	0.63 ± 0.08	$\textbf{0.67} \pm \textbf{0.09}$
Regression - MAE (\downarrow)					
Apnea/Hypopnea Index > 3%	15.54 [14.20-16.69]	14.06 [13.05-15.16]	14.23 [13.04-15.42]	13.85 [12.43-15.49]	12.97 [11.87-14.05]
Apnea/Hypopnea Index $> 4\%$	12.64 [11.47-13.78]	11.57 [10.51-12.72]	11.80 [10.79-12.93]	11.24 [9.71-12.87]	10.56 [9.59-11.62]
Gestation Age	7.28 [7.16-7.39]	5.69 [5.54-5.85]	6.24 [6.10-6.37]	6.40 [6.21-6.59]	6.05 [5.91-6.17]
Systolic BP (VV)	15.88 [13.67-18.36]	17.24 [14.57-20.13]	14.71 [12.38-17.29]	19.11 [16.26-22.23]	14.65 [12.50-16.78]
Diastolic BP (VV)	8.65 [7.16-10.27]	10.53 [8.91-12.19]	10.53 [8.91-12.19]	10.87 [9.10-12.98]	8.29 [6.61-10.22]
Systolic BP (PPG-BP)	16.32 [13.87-19.13]	16.91 [13.31-19.34]	14.50 [11.98-17.31]	13.60 [10.65-16.51]	14.39 [12.53-16.45]
Diastolic BP (PPG-BP)	9.30 [7.94-10.87]	10.26 [8.13-12.57]	9.53 [8.28-10.96]	8.88 [7.33-10.76]	8.71 [7.18-10.01]
Average HR	6.88 [5.81-8.12]	8.51 [7.05-10.07]	4.41 [3.48-5.48]	3.47 [2.74-4.32]	4.00 [3.34-4.67]
HR	16.35 [16.20-16.50]	9.65 [9.50-9.79]	8.82 [8.68-8.96]	10.92 [10.80-11.04]	11.53 [11.40-11.66]
Average	12.09 ± 3.83	11.60 ± 3.60	10.43 ± 3.46	10.92 ± 4.25	$\textbf{10.12} \pm \textbf{3.47}$

Learning from unlabeled Audio data

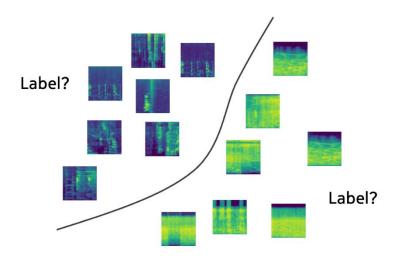

SoundCollage: Automated Discovery of New Classes in Audio Datasets



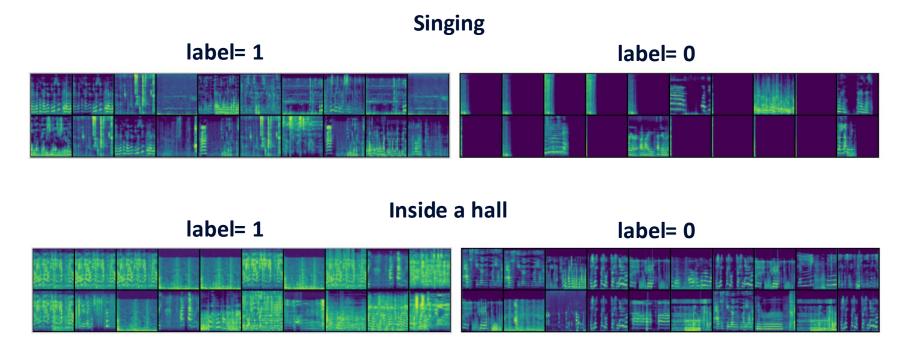
Ryuhaerang Choi^{*†}, Soumyajit Chatterjee[‡], Dimitris Spathis[‡], Sung-Ju Lee[†], Fahim Kawsar^{‡§}, Mohammad Malekzadeh[‡] [‡]Nokia Bell Labs, Cambridge, UK [†]KAIST, South Korea [§]University of Glasgow, UK

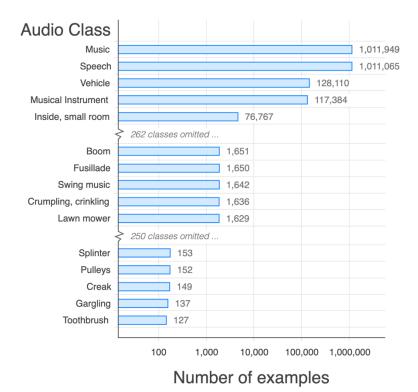

https://github.com/nokia-bell-labs/audio-class-discovery

Audio to MFCC

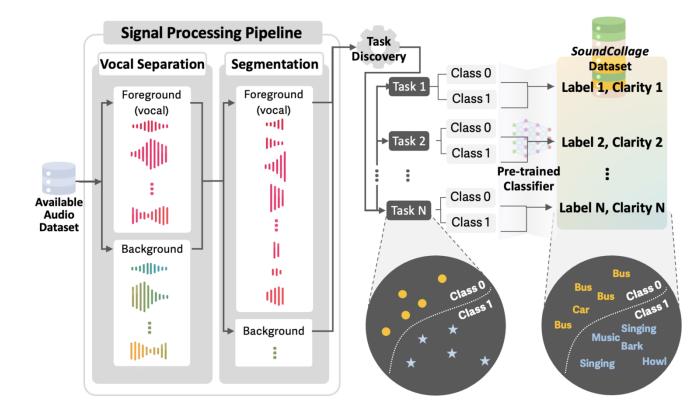


Annotating MFCC?!

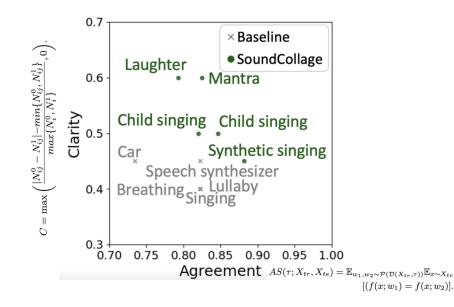



Annotating MFCC!

In-the-wild Audio


{III AudioSet 5.8 thousand hours of audio 2.1 million annotated videos 527 classes of annotated sounds

https://research.google.com/audioset/



SoundCollage

Automated Discovery of New Classes in Audio Datasets

Class Discovery

Original	System	Acc (%)	Prec (%)	Rec (%)	F1 (%)	Label
Speech	Baseline	51.8 ± 4.6	51.7 ± 4.8	51.8 ± 4.6	51.4 ± 5.0	Speech synthesizer
	Ours	75.6 ± 13.0	77.7 ± 14.1	75.6 ± 13.0	74.0 ± 13.8	Mantra
Domestic	Baseline	56.2 ± 10.8	53.7 ± 16.0	56.2 ± 10.8	54.1 ± 13.4	Laughter
sounds, home sounds	Ours	90.9 ± 5.3	91.1 ± 5.2	90.9 ± 5.3	90.9 ± 5.3	Inside, large room or hall
Outside	Baseline	62.2 ± 19.7	63.1 ± 21.4	62.2 ± 19.7	59.3 ± 21.1	Silence
rural or natural	Ours	91.6 ± 4.2	92.1 ± 4.8	91.6 ± 4.2	91.2 ± 4.6	Musical instrument

Takeaways!

- ✓ Balanced Approach: Effective solutions in human sensing require both model-centric and data-centric approaches for optimal compute efficiency and model accuracy.
- Challenges of Data Labeling: Due to the sensitivity and complexity of health data, labeling is
 often impractical or cost-prohibitive.
- Unlabelled Data Learning: Learning from unlabelled data is essential, as it enables us to build meaningful feature representations without needing extensive labeled datasets. Robust feature extractors allow limited labeled data to support accurate classifiers, enabling effective model training with minimal labeling.
- Automated Pipelines for New Insights: Combining domain expertise with machine learning in automated workflows helps unlock new insights from existing unlabelled datasets. Largescale, unlabelled data sources (like PPG and Audio) can be leveraged to develop innovative solutions.

We are building multi-sensory device platforms that learn, infer, and augment human behavior and health awareness.

For Research Scientists and PhD interns

we have opportunities

Mohammad Malekzadeh

Senior Research Scientist & Tech Lead mmalekzadeh.github.io

