Research

You can also explore the full list of my publications on my Google Scholar profile.

2024

  1. NeurIPS
    2024_papagei_neurips.png
    PaPaGei: Open Foundation Models for Optical Physiological Signals
    Arvind Pillai, Dimitris Spathis, Fahim Kawsar, and Mohammad Malekzadeh
    In NeurIPS Workshop on Time Series in the Age of Large Models, Dec 2024
  2. NeurIPS
    2024_primus_neurips.png
    PRIMUS: Pretraining IMU Encoders with Multimodal and Self-Supervisied Learning
    Arnav M Das, Chi Ian Tang, Fahim Kawsar, and Mohammad Malekzadeh
    In NeurIPS Workshop on Time Series in the Age of Large Models, Dec 2024
  3. NeurIPS
    2024_softmax_neurips.png
    Analysing Softmax Entropy Minimization for Adaptating Multitask Models at Test-time
    Soumyajit Chatterjee, Abhirup Ghosh, Fahim Kawsar, and Mohammad Malekzadeh
    In NeurIPS Workshop on Fine-Tuning in Modern Machine Learning: Principles and Scalability, Dec 2024
  4. ICLR
    2024_sound_collage.png
    SoundCollage: Automated Discovery of New Classes in Audio Datasets
    Ryuhaerang Choi, Soumyajit Chatterjee, Dimitris Spathis, Sung-Ju Lee, Fahim Kawsar, and Mohammad Malekzadeh
    In ICLR Workshop on Data-centric Machine Learning Research (DMLR), May 2024
  5. arXiv
    2024_mdfl_arxiv.png
    Enhancing Efficiency in Multidevice Federated Learning through Data Selection
    Fan Mo, Mohammad Malekzadeh, Soumyajit Chatterjee, Fahim Kawsar, and Akhil Mathur
    ArXiv Preprint, May 2024
  6. arXiv
    2024_mu_arxiv.png
    Deep Unlearn: Benchmarking Machine Unlearning
    Xavier F. Cadet, Anastasia Borovykh, Mohammad Malekzadeh, Sara Ahmadi-Abhari, and Hamed Haddadi
    ArXiv Preprint, May 2024
  7. BMVC
    2024_vic_bmvc.png
    Vicious Classifiers: Assessing Inference-time Data Reconstruction Risk in Edge Computing
    Mohammad Malekzadeh, and Deniz Gunduz
    In BMVC 2024 workshop on Privacy, Fairness, Accountability and Transparency in Computer Vision, Nov 2024
  8. WSDM
    2024_crossl_wsdm.png
    CroSSL: Cross-modal Self-Supervised Learning for Time-series through Latent Masking
    Shohreh Deldari, Dimitrios Spathis, Mohammad Malekzadeh, Fahim Kawsar, Flora Salim, and Akhil Mathur
    In 17th ACM International Conference on Web Search and Data Mining (WSDM), Mar 2024
  9. HotMobile
    2024_salteddnn_hotmobile.png
    Salted Inference: Enhancing Privacy while Maintaining Efficiency of Split Inference in Mobile Computing
    Mohammad Malekzadeh, and Fahim Kawsar
    In 25th International Workshop on Mobile Computing Systems and Applications (HotMobile), Feb 2024

2023

  1. ICLR
    2023_centaur_iclr.png
    Centaur: Federated Learning for Constrained Edge Devices
    Fan Mo, Mohammad Malekzadeh, Soumyajit Chatterjee, Fahim Kawsar, and Akhil Mathur
    In ICLR Workshop on Machine Learning for IoT: Datasets, Perception, and Understanding (ML4IoT), May 2023
  2. arXiv
    2023_vic_arxiv.png
    Vicious Classifiers: Data Reconstruction Attack at Inference Time
    Mohammad Malekzadeh, and Deniz Gunduz
    ArXiv Preprint, Dec 2023
    [The extended version is available in the BMVC version above.]
  3. ICML
    2023_latentmask_icml.png
    Latent Masking for Multimodal Self-supervised Learning in Health Timeseries
    Shohreh Deldari, Dimitrios Spathis, Mohammad Malekzadeh, Fahim Kawsar, Flora Salim, and Akhil Mathur
    In ICML Workshop on Machine Learning for Multimodal Healthcare Data (ML4MHD), Jul 2023

2022

  1. NSDI
    2022_3nic_nsdi.png
    Re-architecting Traffic Analysis with Neural Network Interface Cards
    Giuseppe Siracusano, Salvator Galea, Davide Sanvit, Mohammad Malekzadeh, Paolo Costa, Gianni Antichi, Hamed Haddadi, and Roberto Bifulco
    In 19th USENIX Symposium on Networked Systems Design and Implementation (NSDI), Jul 2022
  2. arXiv
    2022_vinf_arxiv.png
    Quantifying and Localizing Usable Information Leakage from Neural Network Gradients
    Fan Mo, Anastasia Borovykh, Mohammad Malekzadeh, Soteris Demetriou, Deniz Gündüz, and Hamed Haddadi
    ArXiv Preprint, Jul 2022

2021

  1. CCS
    2021_hbcnet_ccs.png
    Honest-but-Curious Nets: Sensitive Attributes of Private Inputs can be Secretly Coded into the Classifiers’ Outputs
    Mohammad Malekzadeh, Anastasia Borovykh, and Deniz Gündüz
    In ACM Conference on Computer and Communications Security (CCS), Nov 2021
  2. CCS
    2021_dp_op_ccs.png
    Efficient Hyperparameter Optimization for Differentially Private Deep Learning
    Aman Priyanshu, Rakshit Naidu, Fatemehsadat Mireshghallah, and Mohammad Malekzadeh
    In CCS Workshop on Privacy Preserving Machine Learning (ACM CCS), Nov 2021
  3. IMWUT
    2021_dana_imwut.png
    DANA: Dimension-Adaptive Neural Architecture for Multivariate Sensor Data
    Mohammad Malekzadeh, Richard G. Clegg, Andrea Cavallaro, and Hamed Haddadi
    ACM Journal on Interactive, Mobile, Wearable and Ubiquitous Technologies (IMWUT), Oct 2021
    [Presented at the ACM conference for Ubiquitous Computing (UbiComp 2021)]
  4. ICLR
    2021_layerwise_iclr.png
    Layer-wise characterization of latent information leakage in federated learning
    Fan Mo, Anastasia Borovykh, Mohammad Malekzadeh, Soteris Demetriou, and Hamed Haddadi
    In ICLR Workshop on Distributed and Private Machine Learning (DPML), May 2021
    [The extended version is available in the arXiv version above.]
  5. AAAI
    2020_dopamine_aaai.png
    Dopamine: Differentially Private Federated Learning on Medical Data
    Mohammad Malekzadeh, Burak Hasircioglu, Nitish Mital, Kunal Katarya, Mehmet Emre Ozfatura, and Deniz Gündüz
    In The Second AAAI Workshop on Privacy-Preserving Artificial Intelligence (PPAI), Feb 2021
    [Selected as the best submission to the ITU AI/ML in 5G Challenge, sub-challenge Privacy Preserving AI/ML in 5G networks for healthcare applications.]

2020

  1. MLSys
    2020_bandit_mlsys.png
    Privacy-Preserving Bandits
    Mohammad Malekzadeh, Dimitrios Athanasakis, Hamed Haddadi, and Benjamin Livshits
    In Conference on Machine Learning and Systems (MLSys), Austin, USA, Mar 2020
  2. RSOS
    2020_cgan_rsos.png
    Modeling and Forecasting Art Movements with CGANs
    Edoardo Lisi, Mohammad Malekzadeh, Hamed Haddadi, F. Din-Houn Lau, and Seth Flaxman
    Royal Society Open Science Journal (RSOS), Feb 2020
  3. arXiv
    2020_nic_arxiv.png
    Running Neural Networks on the NIC
    Giuseppe Siracusano, Salvator Galea, Davide Sanvit, Mohammad Malekzadeh, Paolo Costa, Gianni Antichi, Hamed Haddadi, and Roberto Bifulco
    ArXiv Preprint, Sep 2020

2019

  1. PMC
    2019_pmc_combined.png
    Privacy and Utility Preserving Sensor-Data Transformations
    Mohammad Malekzadeh, Richard G. Clegg, Andrea Cavallaro, and Hamed Haddadi
    Pervasive and Mobile Computing Journal, Elsevier, Nov 2019
  2. IoTDI
    2019_aae_iotdi.png
    Mobile Sensor Data Anonymization
    Mohammad Malekzadeh, Richard G. Clegg, Andrea Cavallaro, and Hamed Haddadi
    In ACM/IEEE International Conference on Internet-of-Things Design and Implementation (IoTDI), Montreal, Canada, Apr 2019

2018

  1. EuroSys
    2018_gen_eurosys.png
    Protecting Sensory Data against Sensitive Inferences
    Mohammad Malekzadeh, Richard G. Clegg, Andrea Cavallaro, and Hamed Haddadi
    In EuroSys Workshop on Privacy by Design in Distributed Systems (W-P2DS), Porto, Portugal, Apr 2018
  2. IoTDI
    2018_rae_iotdi.png
    Replacement AutoEncoder: A Privacy-Preserving Algorithm for Sensory Data Analysis
    Mohammad Malekzadeh, Richard G. Clegg, and Hamed Haddadi
    In ACM/IEEE International Conference on Internet-of-Things Design and Implementation (IoTDI), Florida, USA, Apr 2018
  3. Alan-Turing-Institute
    2018_data_study_ati.png
    Technical Report: Fairness in Algorithmic Decision Making
    Paul-Marie Carfantan, Omar Costilla-Reyes, Delia Fuhrmann, Jonas Glesaaen, Qi He, Andreas Kirsch, Julie Lee, Mohammad Malekzadeh, Esben Sø rig, Caryn Tan, Emily Turner, and Vinh Quang
    , London, UK, Apr 2018

2017

  1. IJACSA
    2017_gamified.png
    Gamified Incentives: A Badge Recommendation Model to Improve User Engagement in Social Networking Websites
    Reza Gharibi, and Mohammad Malekzadeh
    International Journal of Advanced Computer Science and Applications (IJACSA), Nov 2017

2014

  1. ASONAM
    2014_social_welfare.png
    A Multi-Generational Social Learning Model: the Effect of Information Cascade on Aggregate Welfare
    Marziyeh Barghandan, Mohammad Malekzadeh, Atefeh Safdel, and Iren Mazloomzadeh
    In The 2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), Aug 2014

2011

  1. SNA-KDD
    2011_social_balance.png
    Social Balance and Signed Network Formation Games
    Mohammad Malekzadeh, MohammadAmin Fazli, Pooya Jalaly Khalilabadi, Hamid R. Rabiee, and MohammadAli Safari
    In The 5th SNA-KDD Workshop (SNA-KDD), Aug 2011

2008

  1. CSICC
    2008_persian_captcha.png
    Persian CAPTCHA System to Prevent Automatic Subscribing of Software Robots in Web Pages
    Mohammad Malekzadeh, and Mehdy Bohlool
    In The 13th National CSI Computer Conference (CSICC), Mar 2008
    [This paper is published in Persian]